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Abstract. We study a non-perturbative single field (inflaton) governed cosmological model from a 5D non-
compact Kaluza–Klein (NKK) theory of gravity. The inflaton field fluctuations are estimated for different
epochs of the evolution of the universe. We conclude that the inflaton field has been sliding down its
(quadratic) potential hill along the whole evolution of the universe and a mass is involved of the order
of the Hubble parameter. In the model here developed the only free parameter is the Hubble parameter,
which could be reconstructed in the future from Super Nova Acceleration Probe (SNAP) data.
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1 Introduction

The possibility that space-time had more than four dimen-
sions has widely been studied regarding its cosmological
aspects since long ago [1]. Investigations have focused on
attempts to explain why the universe presently appears
to have only four space-time dimensions if it is, in fact,
a dynamically evolving (4 + k)-dimensional manifold (k
being the number of extra dimensions). It has been shown
that solutions to the (4 + k)-dimensional Einstein equa-
tions exist for which 4D space-time expands while the extra
dimensions contract or remain constant. It has been also
suggested that experimental detection of the time vari-
ation of the fundamental constants could provide strong
evidence for the existence of extra dimensions [2]. In the
past years, there has been a marked resurgence of interest in
models with non-compact or large extra dimensions. Three
examples of such scenarios are the best known – namely
the braneworld models of Randall and Sundrum (RS) [3]
and Arkani-Hamed, Dimopoulos and Dvali (ADD) [4,5], as
well as the older space-time-matter theory (STM) [6]. The
RS model is motivated from certain ideas in string theory,
which suggest that the particles and fields of the stan-
dard model are naturally confined to a lower-dimensional
hypersurface living in a non-compact, higher-dimensional
bulk manifold. The driving goal behind the ADD picture
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is to explain the discrepancy in scale between the observed
strength of the gravitational interaction and the other fun-
damental forces. This is accomplished by noting that in
generic higher-dimensional models with compact extra di-
mensions, the bulk Newton’s constant is related to the
effective 4D constant by factors depending on the size and
number of the extra dimensions. Finally, STM or induced
matter theory proposes that our universe is an embed-
ded 4D-surface in a vacuum 5D manifold. In this picture,
what we perceive to be the source in the 4D Einstein field
equations is really just an artifact of the embedding; or in
other words, conventional matter is induced from higher-
dimensional geometry.

This paper is devoted to the study of a non-perturbative
single field (inflaton) governed cosmological model from a
5D NKK theory of gravity. In a cosmological context, the
energy of scalar fields has been argued to contribute to
the expansion of the universe [7], and has been proposed
to explain inflation as well as the presently accelerated
expansion. We have in mind an universe which initially
suffers an inflationary expansion that after inflation has a
change of phase towards a decelerated expansion (radiation
and matter dominated expansions), and thereafter evolves
towards the present day observed accelerated (quintessen-
tial) expansion. We consider that the universe is in apparent
vacuum on the 5D globally flat (RABCD = 0) metric. The
5D apparent vacuum is considered as a purely kinetic La-
grangian for a scalar field minimally coupled to gravity on
a 5D globally flat metric.
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2 Reviewed and extended formalism

2.1 The inflaton field in a 5D vacuum state

We consider the canonical 5D metric [8]

dS2 = θ
(
ψ2dN2 − ψ2e2Ndr2 − dψ2) , (1)

where dr2 = dx2 + dy2 + dz2. Here, the coordinates (N ,
r) are dimensionless, the fifth coordinate ψ has spatial
units and θ is a dimensionless parameter that can take
the values θ = ±1. The metric (1) describes a flat 5D
manifold in apparent vacuum (GAB = 0). Notice that we
are considering a diagonal metric because we are dealing
only with gravitational effects, which are the important
ones in the global evolution for the universe. Furthermore,
the metric (1) is considered as 3D spatially isotropic and
flat: r2

3 = x2 = y2 = z2 and globally flat (RABCD = 0).
To describe the 5D vacuum universe, we consider an ac-

tion

I = −
∫

d4xdψ

√∣∣∣∣ (5)g
(5)g0

∣∣∣∣
[ (5)R

16πG
+(5) L(ϕ,ϕ,A)

]
, (2)

for a scalar field ϕ, which is minimally coupled to gravity.
For the metric (1), |(5)g| = ψ8e6N is the absolute value of
the determinant of gAB and |(5)g0| = ψ8

0e6N0 is a constant
of dimensionalization determined by |(5)g| evaluated at
ψ = ψ0 and N = N0. Furthermore, (5)R is the 5D Ricci
scalar, G = M−2

P is the gravitational constant and MP =
1.2 1019 GeV is the Planckian mass. In this work we shall
consider N0 = 0, so that

∣∣(5)g0∣∣ = ψ8
0 . Here, the index

“0” denotes the value at the end of inflation (i.e., when
b̈ = 0). Since we aim to describe a manifold in apparent
vacuum the Lagrangian density L in (2) should be only
kinetic in origin:

(5)L(ϕ,ϕ,A) =
1
2
gABϕ,Aϕ,B , (3)

where the diagonal tensor metric gAB is given by the line
element (1).

Since ∂N
∂ψ and ∂ψ

∂N are zero (the coordinates are inde-
pendent), the equation of motion for the scalar quantum
field ϕ is

��
ϕ +3

�
ϕ −e−2N∇2

rϕ−
[
4ψ

∂ϕ

∂ψ
+ ψ2 ∂

2ϕ

∂ψ2

]
= 0, (4)

where the overstar denotes the derivative with respect to
N and ϕ ≡ ϕ(N, r, ψ). The commutator between ϕ and
ΠN = ∂L

∂ϕ,N
= gNNϕ,N is given by[

ϕ(N, r, ψ), ΠN (N, r′, ψ′)
]

= igNN
∣∣∣∣ (5)g0(5)g

∣∣∣∣ δ(3)(r − r′)δ(ψ − ψ′), (5)

where
∣∣∣ (5)g0

(5)g

∣∣∣ is the inverse of the normalized volume of the

manifold (1) and gNN = ψ−2. By means of the transfor-

mation ϕ = χe−3N/2
(
ψ0
ψ

)2
we obtain the 5D generalized

Klein–Gordon-like equation for χ(N, r, ψ) and the com-

mutator between χ and
�
χ:

��
χ −

[
e−2N∇2

r +
(
ψ2 ∂2

∂ψ2 +
1
4

)]
χ = 0, (6)

[
χ(N, r, ψ),

�
χ (N, r′, ψ′)

]
= iδ(3)(r − r′)δ(ψ − ψ′). (7)

The redefined field χ can be written in terms of a
Fourier expansion in terms of the modes χkrkψ (N, r, ψ) =
ei(kr·r+kψ·ψ)ξkrkψ (N,ψ):

χ(N, r, ψ)

=
1

(2π)3/2

∫
d3kr

∫
dkψ

[
akrkψei(kr·r+kψ·ψ)ξkrkψ (N,ψ)

+ a†
krkψ

e−i(kr·r+kψ·ψ)ξ∗
krkψ

(N,ψ)
]
, (8)

where the asterisk denotes the complex conjugate and
(akrkψ , a

†
krkψ

) are respectively the annihilation and cre-
ation operatorswhich satisfy the following commutation ex-
pressions:[

akrkψ , a
†
k′
rk

′
ψ

]
= δ(3)

(
kr − k′

r

)
δ
(
kψ − k′

ψ

)
, (9)[

a†
krkψ

, a†
k′
rk

′
ψ

]
=
[
akrkψ , ak′

rk
′
ψ

]
= 0. (10)

The expression (7) complies if the modes are normalized
by the following condition:

ξkrkψ

(
�

ξkrkψ

)∗
− (ξkrkψ)∗ �

ξkrkψ= i. (11)

This equation provides the normalization for the complete
set of solutions on the whole (kr, kψ) spectrum. On the
other hand, the dynamics for the modes ξkrkψ (N,ψ) is
given by

��

ξ krkψ +k2
re

−2 Nξkrkψ

+ψ2
(
k2
ψ − 2ikψ

∂

∂ψ
− ∂2

∂ψ2 − 1
4ψ2

)
ξkrkψ = 0. (12)

The solution of (12) with the condition (11) can be
written as [10]

ξkrkψ (N,ψ) =
i
√

π
2

e−ikψ·ψH(2)
1/2[kre

−N ] = e−ikψ.ψ ξ̄kr (N),

(13)
where H(1,2)

1/2 [x(N)] = J1/2[x(N)] ± iY1/2[x(N)] are the
Hankel functions, J1/2[x(N)] and Y1/2[x(N)] are the first
and second kind Bessel functions with x(N) = kre−N .
Furthermore the function ξ̄kr (N) is given by

ξ̄kr (N) =
i
√

π
2

H(2)
1/2

[
kre−N] , (14)
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such that the normalization condition for ξ̄kr (N) becomes

ξ̄kr

(
�

ξ̄kr

)∗
− (ξ̄kr)∗ �

ξ̄kr= i. (15)

Finally, the field χ in (8) can be rewritten as

χ(N, r, ψ) = χ(N, r)

=
1

(2π)3/2

∫
d3kr

∫
dkψ (16)

×
[
akrkψeikr.r ξ̄kr (N) + a†

krkψ
e−ikr.r ξ̄∗

kr (N)
]
,

and the field ϕ is given by

ϕ(N, r, ψ) = e− 3N
2

(
ψ0

ψ

)2

χ(N, r), (17)

with χ(N, r) given by (16). Note that the exponentials
e±ikψ.ψ disappear in χ(N, r) and there is no dependence on
the fifth coordinate ψ in this field. This is a very important
fact that tells us that the field ϕ(N, r, ψ) propagates only
on the 3D spatially isotropic space r(x, y, z), but not on the
additional space-like coordinate ψ. Hence, gravity should
not be localized on the fifth dimension and therefore the
usual Newton law should not hold on the 5D manifold.

2.2 Coarse-graining of ϕ in a 5D vacuum state

To study the evolution of the field ϕ on large 3D spatial
scales, we can introduce the field χL

χL(N, r) =
1

(2π)3/2

∫
d3kr

∫
dkψ Θ(εk0(N) − kr)

× [akrkψeikr.r ξ̄kr (N) + c.c.
]
, (18)

where Θ denotes the Heaviside function. Furthermore, c.c.
denotes the complex conjugate of the first term inside the
brackets and k0 = 1/2eN is the N -dependent wavenumber
(related to the 3D spatially isotropic, homogeneous and
flat space r2 = x2 + y2 + z2), which separates the long
(k2
r � k2

0) and short (k2
r � k2

0) wavelength sectors. Modes
with kr/k0 < ε are referred to as outside the horizon.

If the short wavelength modes are described with the
field χS

χS(N, r) =
1

(2π)3/2

∫
d3kr

∫
dkψΘ(kr − εk0(N))

× [akrkψeikr.r ξ̄kr (N) + c.c.
]
, (19)

such that χ = χL + χS , then the equation of motion for
χL will be approximately

��
χL −

(
k0(N)b0

b

)2

χL (20)

= ε

[
��

k0 η(N, r)+
�

k0 κ(N, r) + 2
�

k0 γ(N, r)
]
,

where the stochastic operators η, κ and γ are given respec-
tively by

η(N, r) =
1

(2π)3/2

∫
d3kr

∫
dkψ δ(εk0(N) − kr)

× [akrkψeikr.r ξ̄kr (N) + c.c.
]
, (21)

κ(N, r) =
1

(2π)3/2

∫
d3kr

∫
dkψ

�

δ (εk0(N) − kr)

× [akrkψeikr.r ξ̄kr (N) + c.c.
]
, (22)

γ(N, r) =
1

(2π)3/2

∫
d3kr

∫
dkψ δ(εk0(N) − kr)

×
[
akrkψeikr.r

�

ξ̄kr (N) + c.c.
]
. (23)

Equation (20) can be rewritten as

��
χL − 1

4
χL = ε

[
d

dN

(
�

k0 η(N, r)
)

+
�

k0 γ(N, r)
]
. (24)

This is a Kramers-like stochastic equation that can be
written as two first order stochastic (Langevin) ones by

introducing the auxiliar field u =
�
χL −ε

�

k0 η:

�
u =

1
4
χL + ε

�

k0 γ, (25)

�
χL = u+ ε

�

k0 η. (26)

The role of the noise γ can be minimized in the system (25)

and (26) if
(
�

k0

)2 〈
γ2
〉�

(
��

k0

)2 〈
η2
〉
, which holds when

�

ξ̄kr

(
�

ξ̄kr

)∗

ξ̄kr
(
ξ̄kr
)∗ � 1. (27)

In that case the system (25) and (26) can be approxi-
mated by

�
u = αχL, (28)

�
χL = u+ ε

�

k0 η. (29)

This system represents two Langevin equations with a noise
η which is gaussian and white in nature:

〈η〉 = 0, (30)

〈
η2〉 =

ε (k0)
2

2π2
�

k0

∫
dkψ ξ̄εk0 ξ̄

∗
εk0 δ(N −N ′). (31)

The equation that describes the dynamics of the transi-
tion probability P

[
χ

(0)
L , u(0)|χL, u

]
from a configuration

(χ(0)
L , u(0)) to (χL, u) is a Fokker–Planck one:

∂P

∂N
= −u ∂P

∂χL
− 1

4
χL

∂P

∂u
+

1
2
D11

∂2P

∂χ2
L

, (32)
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where D11 = 1
2

(
ε
�

k0

)2 [∫
dN

〈
η2
〉]

is the diffusion coef-

ficient related to the variable χL. Explicitly

D11 =
ε3 (k0)

2

4π2

�

k0

∫
dkψ ξ̄εk0 ξ̄

∗
εk0 , (33)

which is divergent.

2.3 The metric

Now we consider the 5D canonical metric (1). In the 3D
comoving frame Ur = 0, the geodesic dynamics dUC

dS =
−ΓCABUAUB , with gABU

AUB = 1, give us the velocities
UA (Latin letters take the values 0, 1, 2, 3, 4)

UN =
u(N)

ψ
√
u2(N) − 1

, Ur = 0,

Uψ = − 1√
u2(N) − 1

, (34)

which are satisfied for S(N) = ±|N |. In this work we shall
consider the case S(N) = |N |. Note that the solution (34)
is one of the possible representations of the general solution

UN =
cosh[S(N)]

ψ
, (35)

Ur = 0, (36)

Uψ = −sinh[S(N)]. (37)

In the representation (34) we obtain dψ
dN ≡ Uψ

UN
= ψ/u(N),

whereu(N) is an arbitrary function such that tanh[S(N)] =
−1/u(N). Thus, the fifth coordinate evolves as

ψ(N) = ψ0e
∫

dN/u(N). (38)

Here, ψ0 is a constant of integration that has spatial units.
From the mathematical point of view, we are taking a
foliation of the 5D metric (1) with r constant. Hence, to
describe the metric in physical coordinates we must make
the following transformations [9]:

t =
∫
ψ(N)dN, R = rψ, L = ψ(N) e− ∫

dN/u(N),

(39)
such that for ψ(t) = 1/h(t), we obtain the 5D metric

dS2 = θ
(
dt2 − e2

∫
h(t)dtdR2 − dL2

)
, (40)

where L = ψ0 is a constant and h(t) = ḃ/b is the effective
Hubble parameter and b is the effective scale factor of
the universe. The metric (40) describes a 5D generalized
FRW metric, which is 3D spatially flat [i.e., it is flat in
terms of R = (X,Y, Z)], isotropic and homogeneous. In the

representation (R, t, L), the velocities ÛA = ∂x̂A

∂xB
UB are

Û t =
2u(t)√
u2(t) − 1

,

ÛR = − 2Rh√
u2(t) − 1

,

ÛL = 0,

(41)

where the old velocities UB are UN , Ur = 0 and Uψ and
the velocities ÛB are constrained by the condition

ĝABÛ
AÛB = 1. (42)

Note that the metric (40) is not globally flat and the line
element (40) does not describe a 5D vacuum state. Fur-
thermore, we are considering an observer which is in the
frame described by the velocities (41). To avoid confusion,
notice that the transformation (39) only describes a map
from the particular frame (34) [of the metric (1)], to the
particular frame (41) [of the metric (40)]. However, the
transformation (39) is not a general map from the metric
(1) to (40). Hence, if an observer is in the frame (41), he
only see the effective 4D FRW metric

dS2 → ds2 = θ
(
dt2 − e2

∫
h(t)dtdR2

)
, (43)

which has an effective 4D scalar curvature (4)R = 6(ḣ +
2h2). The metric (43) has a metric tensor with components
gµν (µ, ν take the values 0, 1, 2, 3). The absolute value of the
determinant of this tensor is

∣∣(4)g∣∣ = (b/b0)6. Furthermore,
the 4D energy density ρ and the pressure p are

8πGρ = 3h2, (44)

8πGp = −(3h2 + 2ḣ), (45)

where ḣ < 0 during the whole evolution of the universe.
The functionu can be written as a function of the cosmic

time u(t) = − h2

ḣ
, where the overdot represents the deriva-

tive with respect to t. The solution N = arctanh[1/u(t)]
corresponds to a time dependent power-law expanding uni-
verse, with h(t) = p(t)t−1, such that the effective scale fac-
tor goes as b ∼ e

∫
p(t)/tdt. When u2(t) > 1, the velocities

Û t and ÛR are real, so that the condition (42) implies that
θ = 1. [Note that the function u(t) can be related to the
deceleration parameter q(t) = −b̈b/ḃ2: u(t) = 1/[1+ q(t)].]
In such a case the expansion of the universe is accelerated
(b̈ > 0). However, when u2 < 1 the velocities U t and UR

are imaginary and the condition (42) holds for θ = −1. In
this case the expansion of the universe is decelerated be-
cause b̈ < 0. So, the parameter θ is introduced in the metric
(40) to preserve the hyperbolic condition (42). The new
coordinate R gives us the physical distance between galax-
ies separated by cosmological distances: R(t) = r(t)/h(t),
where r(t) is given by 3u2(t) = 4r2(t) (b/b0)

2 − 1:

r2(t) =
[

3
4
h4

ḣ2
+

1
4

]
e−2

∫
h(t) dt, (46)
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for a given evolution of the universe described with b(t).
For r > 1 (r < 1), the 3D spatial distance R(t) is defined
on super (sub) Hubble scales.

2.4 The inflaton field in an effective 4D FRW metric

The 4D Lagrangian corresponding to the effective 4D Fried-
mann–Robertson–Walker (FRW) metric (43) [i.e., in the
frame (41)], is given by

(4)L(ϕ,ϕ,µ) = −
√∣∣∣∣ (4)g

(4)g0

∣∣∣∣
[

1
2
gµνϕ,µϕ,ν + V (ϕ)

]
, (47)

where the effective potential for the 4D FRW metric (43),
is

V (ϕ) = − 1
2
gψψϕ,ψϕ,ψ

∣∣∣∣
ψ=h−1

=
1
2

(
∂ϕ

∂ψ

)2
∣∣∣∣∣
ψ=h−1

. (48)

In our case this potential in the frame (41) and ψ = 1/h,
takes the form

V (ϕ) = 2h2(t) ϕ2(t,R, L). (49)

Notice that this potential has a geometrical origin and
takes different representations in different frames. In our
case the observer is in a frame ÛL = 0, because we are
taking a foliation L = ψ0 on the 5D metric (40). Note that
ψ0 not necessarily takes the usual 4D Planckian length.
Furthermore, the effective 4D equation of motion for ϕ is

ϕ̈+

(
3h− ḣ

h

)
ϕ̇ (50)

− e−2
∫
h(t) dt∇2

Rϕ−
[

4
ψ

∂ϕ

∂ψ
+
∂2ϕ

∂ψ2

]∣∣∣∣
ψ=h−1

= 0,

which means that the effective 4D expression for dV (ϕ)
dϕ is

V ′(ϕ)|ψ=h−1 = 2h2(t) ϕ(R, t, L) − ḣ

h
ϕ̇(R, t, L). (51)

In order to simplify the structure of (50) we can make
the following transformation:

ϕ(R, t) = e− 1
2

∫
(3h−ḣ/h)dtχ(R, t), (52)

such that we obtain the following 4D Klein–Gordon equa-
tion for χ:

χ̈−

e−2

∫
h(t)dt∇2

R +
h2

4
+

3
4

(
ḣ

h

)2

− 1
2
ḧ

h


χ = 0.

(53)
The field χ can be expanded as a Fourier’s representation
in terms of the modes χkRkL(R, t) = eikR.Rξ̄kR(t):

χ(R, t) =
1

(2π)3/2

∫
d3kR

∫
dkL

[
akRkLeikR.Rξ̄kR(t) + c.c.

]

×δ (kL − kψ0) , (54)

where the dynamics for the modes ξ̄kR(t) is given by

¨̄ξkR +


k2

Re−2
∫
h(t) dt − h2

4
− 3

4

(
ḣ

h

)2

+
1
2
ḧ

h


 ξ̄kR = 0.

(55)
It is important to notice that (55) is exactly the equation
for ξ̄kr (N) with the variables transformation (39), on the
hypersurface ψ = h−1.

2.5 Coarse-graining of ϕ
in an effective 4D cosmological metric

Now we can define the fields χL(t,R) and χS(t,R), which
describe respectively the long and short wavelength sectors
of the field χ on the effective 4D FRW metric (43)

χL(t,R) =
1

(2π)3/2

∫
d3kR

∫
dkL Θ(εF (t) − kR)

× [akRkψeikR.Rξ̄kR(t) + c.c.
]
δ(kL − kψ0),

χS(t,R) =
1

(2π)3/2

∫
d3kR

∫
dkL Θ(kR − εF (t))

× [akRkψeikR.Rξ̄kR(t) + c.c.
]
δ(kL − kψ0),

(56)

where F (t) = h(t)e
∫
hdt is the inverse of the Hubble hori-

zon in an expanding universe. The field that describes the
dynamics of χ on the infrared sector (kR < εF ) is χL. Dur-
ing the inflationary expansion the dimensionless parameter
take values of the order of 10−3–10−4. However, the present
day value for ε should be of the order of 102. The dynamics
of χL obeys the Kramers-like stochastic equation

χ̈L − k2
0b

2
0

b2
χL = ε

[
d
dt

(
Ḟ η(t,R)

)
+ Ḟ γ(t,R)

]
, (57)

where k0(t) = e
∫
hdt
[
h2

4 + 3
4

(
ḣ/h

)2
− 1

2 ḧ/h

]1/2
and the

stochastic operators η, κ and γ are

η =
1

(2π)3/2

∫
d3kR δ(εF − kR)

× [akRkψ0
eikR.Rξ̄kR(t) + c.c.

]
, (58)

γ =
1

(2π)3/2

∫
d3kR δ(εF − kR)

×
[
akRkψ0

eikR.R ˙̄ξkR(t) + c.c.
]
. (59)

This second order stochastic equation can be rewritten as
two Langevin stochastic equations

u̇ =
k2
0b

2
0

b2
χL + εḞ γ, (60)
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χ̇L = u+ εḞ η, (61)

where u = χ̇L − εḞ γ. The condition to neglect the noise γ
with respect to η now holds:

˙̄ξkR
˙̄ξ∗
kR

ξ̄kR ξ̄
∗
kR

�
(
F̈
)2

(
Ḟ
)2 , (62)

Notice that this result is exactly the same in (27), with the
transformation (39). The Fokker–Planck equation for the
transition probability P̄ (χ(0)

L , u(0)|χL, u) is

∂P̄

∂t
= −u ∂P̄

∂χL
− k2

0b
2
0

b2
χL

∂P̄

∂u
+D11(t)

∂2P̄

∂χ2
L

, (63)

where D̄11(t) = ε3Ḟ k2
0

4π2

∣∣ξ̄εF ∣∣2.Hence, the equation ofmotion
for
〈
χ2
L

〉
=
∫

dχLduχ2
LP̄ (χL, u) is

d
dt
〈
χ2
L

〉
= D̄11(t). (64)

When D̄11 > 0, χL increases its number of degrees of
freedom. In our case the number of degrees of freedom
changes depending on the rate of expansion of the universe.
In order to return to the original field

ϕL = e− 1
2

∫ (
3h− ḣ

h

)
χL,

(64) can be rewritten as

d
dt
〈
ϕ2
L

〉
= −

(
3h− ḣ

h

)〈
ϕ2
L

〉
+ D̄11(t)e

− ∫ (
3h− ḣ

h

)
dt
,

(65)
which has the following general solution:

〈
ϕ2
L

〉
= e− ∫ t(3h− ḣ

h

)
dt′′
[∫ t

D̄11(t′)dt′ + C

]
, (66)

where C is a constant of integration, and ξ̄kR=εF is the
solution of (55) with kR = ε F .

3 Evolution of the universe: a model

With the aim to study an effective model for the expansion
of the universe we consider the Hubble parameter h(t) =
p(t)/t, where the time dependent power expansion p(t) is
given by

p(t) = 1.8 at−n − 1.8 bt−n/2 +
(
b2

4a
+

2
3

)
+ c t, (67)

where a = 1/6 1030n Gn/2, b = 1/3 1015n Gn/4, c =
10−61 G−1/2 and n = 0.352. This model represents an early
inflationary expansion followed by a decelerated (radiation
dominated followed by matter dominated expansion) that
finally suffers the present day quintessential accelerated

Fig. 1. Evolution of
p[x(t)] as a function of
x(t) = log10(t)

expansion. Other cosmological models without inflation-
ary expansion have been considered recently in the litera-
ture [11]. The power of expansion (67) is shown in Fig. 1,
with x(t) = log10[t/t0]. Note that for x < 10, p(t) suffers
an inflationary expansion. For 60.135 > x > 10, the uni-
verse is decelerated, being radiation dominated for x 
 30
and matter dominated for x 
 55. For x > 60.135 the uni-
verse suffers a quintessential expansion, its actual age being
x 
 60.653 (i.e., it being approximately t 
 1.5 1010 years
old), which has been experimentally observed from the su-
pernova (SNe) Type data [12–15]. The model here studied
gives us the present daydecelerationparameter q = −b̈b/ḃ2:
q(x = 60.653) 
 −0.492, which is in good agreement with
observation [16]. Figure 2 shows the function r(t), which
decreases monotonically. The function r(t) = λphys

λH
[given

by (46)], describes the evolution of the physical wavelength
λphys relative to the horizon wavelength λH = 1/h. Note
that r(t) remains below unity for x > 0.001. Hence, rela-
tivistic causality only should be violated on transplanckian
temporal scales (i.e., for x < 0.001). The origin of this par-
tial violation should be of a quantum mechanical nature.

Fig. 2. Evolution of
r[x(t)] as a function of
x(t) = log10(t), during
the early stages of in-
flation

3.1 Estimation of
〈
ϕ2
L

〉
Equation (55) is very difficult to solve for a time dependent
power-law as (67). Hence, to make an estimation of

〈
ϕ2
L

〉
for different stages of the evolution of the universe we shall
consider that p is nearly constant (i.e., ṗp � p/t). By solving
(55), we obtain

ξ̄kR [y(t)] = i
√

π
4(p− 1)

√
t

t0
H(2)
ν [y(t)], (68)
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where y(t) = krt
p
0t

1−p

p−1 , ν = p
2(p−1) , H(2)

ν is the second
kind Hankel function and t0 corresponds to the time when
inflation begins. In order to obtain

〈
ϕ2
L

〉
from (66), it is

necessary to find D̄11, which is given by

D̄11(t) =
ε3Ḟ k2

0

4π2

∣∣ξ̄εF ∣∣2 
 ε2

16π2

(p− 1)(p2 − 1)
t3p+1
0

t2p−1,

(69)
where we have made use of the fact that

k2
0(t) =

t2(p−1)

4t2p0

(
p2 − 1

)
(which is negative for p < 1), and the small argument
asymptotic expansion for the second kind Hankel function.
Under this approximation, the expectation value for the
second momenta of ϕL is

〈
ϕ2
L

〉 

[

ε2

16π2

(p− 1)(p2 − 1)
2pt3p+1

0

t2p + C

](
t

t0

)−(3p+1)

,

(70)
where C is an arbitrary constant of integration. Notice
that for p = 3/2 it has a singularity. One interesting case
is p = 1/2, that corresponds to the radiation dominated
universe. In this case

〈
ϕ2
L

〉
is given by

〈
ϕ2
L

〉 

[

3ε2

27t
5/2
0

t+ C

](
t

t0

)−5/2

. (71)

Notice that
〈
ϕ2
L

〉
decreases with the time for all values of p.

It is important to note that this approach is only valid when
the condition (62) is fulfilled. Note that k2

0 > 0 for p > 1
and k2

0 < 0 for p < 1. However Ḟ > 0 for p > 1 and Ḟ < 0
for p < 1, so that D̄11 > 0, for all values of p. This means
that the number of degrees of freedom for χL is always
increasing. However the relevant field for us isϕL. Note that
its number of degrees of freedom is always increasing but its
rate of increment is now decreasing because of the present
day (and future) acceleration of the universe. Hence, the
model predicts a decreasing rate in the increment of the
number of degrees of freedom, which (for t → ∞) will be
almost constant. Taking p almost constant from (62) we
obtain that

1
4

� (p− 2)2. (72)

This means that the stochastic approach here developed is
very efficient for p � 2 and has a reasonably good behavior
for p < 1 (we are dealing only with p > 0). However,
for p 
 2, the stochastic noise γ in (60) should be taken
into account.

3.2 Calculation of the background field φc(t)

In order to estimate the evolution of the squared infla-
ton fluctuations in different epochs of the evolution of the
universe, we can make a semiclassical approach ϕ(t,R) =
φc(t) +φ(t,R), such that φc(t) = 〈ϕ〉 and 〈φ〉 = 0. Hence,〈

ϕ2〉 = φ2
c(t) +

〈
φ2〉 . (73)

To estimate
〈
φ2
〉
, we need to know φc(t), which is the zero

mode solution of the differential equation (50) and has the
general solution

φc(t) = e− ∫
p(t)/tdt

(
A e− ∫

p(t)/tdt +B
)
, (74)

where A and B are constants of integration. For the time
dependent power-law (67), the solution is

φc(t) = t
−

(
b2
4a+ 2

3

)
e1.8( an )t−n−3.6( bn )t−n/2−ct (75)

×
[
At

−
(
b2
4a+ 2

3

)
e1.8( an )t−n−3.6( bn )t−n/2−ct +B

]
.

Note that φc(t) decreases monotonically during the whole
history of the universe.

3.3 Estimation of squared inflaton fluctuations
on the infrared sector

Once φc is known, which becomes negligible for late times,
we can estimate the squared inflaton fluctuations

〈
φ2
L

〉
on

the infrared sector. For late times one obtains〈
ϕ2
L

〉
t�G1/2 
 〈φ2

L

〉
t�G1/2 ,

where〈
φ2
L

〉
t�G1/2 (76)



[

ε2

16π2

(p− 1)(p2 − 1)
2pt3p+1

0

t2p + C

](
t

t0

)−(3p+1)

.

Notice that the expectation value for the inflaton field
fluctuations decreases in all the epochs of the expansion of
the universe, independently of the C-value.

4 Final comments

In this paper we have studied a non-perturbative scalar field
governed cosmological model from a non-compact Kaluza–
Klein theory of gravity from a 5D apparent vacuum. This
vacuum is defined as a purely kinetic density Lagrangian
for a scalar field minimally coupled to gravity on a 5D
background globally flat (RABCD = 0) metric. We have
worked out a cosmological model with a time dependent
power-law p(t) which describes an universe that initially is
accelerated and suffers an inflationary expansion (p >> 1).
However, this power decreases with time through its mini-
mal value p 
 1/2, which describes a radiation dominated
universe. Thereafter, this power begins to increase passing
by a matter dominated (p 
 2/3) epoch, to the present day
quintessential expansion with p 
 1.2. The model predicts
that p will continue increasing and finally will expand with
p 
 ct. This means that finally the universe will adopt a
de Sitter expansion. At this moment, the field φc(t) will
tend to zero, when the system will adopt its minimum
energetic configuration.
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We agree with the suggestion that perhaps some scalar
(inflaton field) has been sliding down its potential energy
hill on a time scale of billions of years rather than fractions
of a second (i.e., only during inflation) [8, 10, 17, 18]. We
obtain that the mass of the inflaton field is of the order of the
Hubble parameter and the scalar potential is quadratic inϕ.
Notice that this potential [see (49)] is induced geometrically
and take different representations in different frames. In our
case, we are dealingwith a framewhich is comovingwith the
expansion of the universe. In agreement with the power-law
(67), in the future the universe will be again dominated
by vacuum p 
 −ρ, to die in a de Sitter (inflationary)
expansion. The stochastic approach here developed has a
good behavior for p � 2 and p < 1, but not for p 
 2. In
that case, a more complete stochastic formalism should be
developed, in order to include the stochastic noise γ in the
evolution of

〈
ϕ2
L

〉
.

Finally, in our cosmlogical model the only free param-
eter is a cosmological observable; the Hubble parameter h.
In this work we are dealing with some example given by
(67), but in general, the theory can make predictions from
observation for the reconstruction of the Hubble parameter,
which is expected from the future SNAP data [19].
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